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PREFACE 

This report presents a plan to certify the security kernels of 
Multics and its Secure Front-End Processor (SFEP) for Project 
Guardian. This document was prepared by F. J. Feiertag, K. N. 
Levitt, P. G. Neumann, and L. Robinson of Stanford Research 
Institute as a subcontractor to Honeywell in this program. 

Because of funding limitations, the Air Force terminated the 
effort which this document describes before the effort reached 
its logical conclusion. This report is incomplete but was 
published in the interest of capturing and disseminating the 
computer security technology that was available when the .effort 
was terminated. Air Force technical comments are included as an 
appendix to identify unresolved technical issues at the time of 
the report. 

This report was to describe a methodology for demonstrating that 
a specific security kernel implementation effectively provided 
the security controls which a mathematical model has shown to be 
sufficient to comply with the Department of Defense Information 
Security Program. However, the report only describes the 
methodology for demonstrating the correspondence between the 
model and a high level specification of a security kernel. The 
effort was terminated before developing techniques to deal with 
lower level representations of the security kernel. 
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I. BACKGROUND 

SUMMARY 

This document outlines the approach considered feasible 
development of a security kernel for Multics whos_ 
properties can be formally verified with respect to the top-level 
specifications of the kernel. An illustration of the proofs of 
correspondence between the kernel specifications and the desired 
multilevel properties is given in Appendix A. It is also shown 
hov these proofs may be carried out automatically. The approach 
given here is also applicable to proofs of program correctness, 
i.e., consistency between the specifications and the programs 
implementing those specifications. However, proofs of program 
correctness are not considered here. 

The approach relies heavily on the use of a formal methodology 
for the design, implementation, and proof of computer systems. 
This methodology has been developed at Stanford Research 
Institute (SRI) and is being applied to the design of several 
systems, including a provably secure operating system (PSOS) and 
several user environments intended to be implemented on it, an 
ultra-reliable computing system with software-implemented fault 
tolerance (SIFT) for commercial aircraft, and a 
message-processing system. Other applications are also 
anticipated. The methodology employs a formal hierarchical 
decomposition of the design, with formally stated specifications 
for each system function and formal assertions about each desired 
property. This report describes the methodology, which is 
considered to be particularly appropriate for the task of 
developing the certifiable security kernels for Multics and the 
Secure Front-End Processor (SFEP). 

The basic design approach is to isolate all nondiscretionary 
(i.e., mandatory) security requirements into a kernel, roughly 
corresponding to a stripped-down Multics Ring 0. Preliminary 
specifications for the kernel functions are found in Stern [76]. 
Bell and LaPadula [74] have precisely formulated the desired 
security properties for the Multics security kernel 
specifications. In order to support the proof of these 
properties, SRI has reformulated the Bell and LaPadula model in 
terms of the primitives of the methodology. This reformulation 
is summarized here, and provides the basis for proof of the 
correspondence between these properties and the specifications 
for the Multics kernel. 
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INTRODUCTION 

Two concepts are basic here, namely SECURITY and INTEGRITY. 
Intuitively speaking, security deals with the SENSITIVITY of 
information, and is intended to prevent unauthorized READING of 
information (i.e., a COMPROMISE of sensitive information). 
Integrity, on the other hand, deals with the trustworthiness of 
information, and is intended to prevent unauthorized WRITING (or 
overwriting) of information (i.e., a CONTAMINATION of trustworthy 
information). 

In order to be applied to a computer system, these concepts must 
be changed somewhat. A computer system, instead of having people 
reading and writing information, has only INFORMATION TRANSFER 
between the various information repositories in the system, 
including the input-output devices. Thus, we assume that each 
information repository in a computer system has both a security 
level and an integrity level, and that only people who are 
cleared to the appropriate levels can have access to the 
information in a given repository. Then, security is concerned 
with preventing the flow of information from a repository at a 
given security level to one at a lower security level. 
Similarly, integrity is concerned with preventing the flow of 
information from a repository at a given integrity level to one 
at a higher integrity level. Thus the two concepts are duals. 
In our formal proofs, we define information repositories and 
information flow, and assign a security level and an integrity 
level to each such repository. 

We have developed a language for writing specifications and 
assertions in accordance with the methodology. This language is 
called SPECIAL (SPECIfication and Assertion Language) (see 
Robinson et al. [76], Roubine et al. [76]). In addition, we have 
developed on-line tools to support the use of this language. 
These tools are intended to simplify the overall development and 
proof effort. They contribute to the design by providing an 
on-line editable form for specifications, with automated checks 
of syntactic consistency. These tools also contribute to the 
correspondence proofs of the security of the design. Additional 
tools have been outlined that will make the correspondence proofs 
almost completely automatable. 

We have also developed and are continuing to develop tools for 
stating and proving semantic properties of programs. These tools 
are compatible with the tools mentioned above to support 
specifications and correspondence proofs. As more of these 
verification tools become available, semi-automatic proofs of 
implementation correctness will become more feasible. 

This report is organized as follows. The methodology is 
summarized, first with respect to design and implementation, then 
with respect to verification. The desired properties of the Bell 
and  LaPadula model are then reviewed.  Properties of SPECIAL are 
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summarized, and the desired security and integrity properties of 
the model are explicitly reformulated using the concepts of 
SPECIAL. Following a brief overview of some relevant design 
issues, the correspondence proofs between the reformulation of 
the model and the specifications for the visible interface are 
discussed. These concepts are also seen to apply to other 
properties of systems. Tools to support the verification effort 
are also discussed, as are several implementation considerations. 
Detailed examples of proofs for the specifications of Stern [76] 
are given in Appendix A. 

II.   THE METHODOLOGY FOR DESIGN AND IMPLEMENTATION 

Our methodology has been described in detail elsewhere (Robinson 
et al. [75], Robinson and Levitt [75], Neumann et al. [75]), and 
continues to evolve. The methodology separates the development 
of a computer system or subsystem into stages corresponding to 

(50) the choice of the visible interface, 

(51) the hierarchical design, 

(52) the specification of each function at each node of  the 
hierarchy, 

(53) the   definition   of   mappings   among   the   data 
representations at connecting nodes, and 

(54) the  writing  of  implementation  programs   for   the 
functions at each node. 

These stages of design and implementation are as follows. 

(50) INTERFACE DEFINITION 

In the initial stage (SO), the desired visible interface is 
defined. In the case of Project Guardian, this is the interface 
to the kernel. This "top-level" interface is then decomposed 
into a set of MODULES (i.e., a set of facilities), each of which 
manages OBJECTS of a particular type. An object is a system 
resource such as a segment, a directory, or a process. Each 
module consists of a collection of FUNCTIONS (corresponding to 
operations and data-structure accesses). Each function has an 
argument list and can be invoked by a program or directly by a 
user. Each function is either an O-function (Operation), which 
changes the state of the module to which it belongs, a V-function 
(Value-returning), which characterizes the state of the module, 
or an OV-function, which both changes the state and returns a 
value. 

(51) HIERARCHICAL DECOMPOSITION OF THE SYSTEM 
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The modules of the visible interface, together with other modules 
whose functions are hidden by the interface but are part of the 
eventual implementation, are arranged into a hierarchy of 
collections of modules. For descriptive simplicity, we assume 
here that there is only one visible interface, and so we may also 
assume that the hierarchy is a linear ordering of these module 
collections, each of which can then be referred to as a LEVEL. 
(For all cases considered here, there is no loss of generality in 
this simplified description.) The implementation of each level 
depends only on the next lower level. However, a module may be 
included in more than one level of the design, as for example the 
module supporting the "user" hardware instructions, which would 
be part of most levels of a typical operating system. The 
structure of the decomposition is thus explicitly declared at 
this stage. 

(S2)  MODULE SPECIFICATION 

For each module, a FORMAL SPECIFICATION is developed (see Roubine 
et al. [76]). In this methodology, specifications are used that 
are similar to those suggested by Parnas [72]. However, we 
extend Parnas' original approach substantially, in that the 
specification language and the hierarchical structure have been 
formalized, and are supported by an on-line environment. 

V-functions of a module are either PRIMITIVE (necessary for 
characterizing the state of the module) or DERIVED (computed from 
the values of other V-functions). Some V-functions are VISIBLE at 
the interface to a module (i.e., can be called by programs), 
while others are HIDDEN. 

The specification of each 0- or OV-function describes precisely 
the effect of that operation as a state change. The state change 
is defined by a set of EFFECTS, each of which relates values of 
primitive V-functions before the call on the specified 0- or 
OV-function and values of those primitive V-functions after the 
return from that call. The specification of each V-function 
gives either the INITIAL VALUE of the function (if it is 
primitive), or its DERIVATION from primitive values (if it is 
derived) . The specification for each visible function also gives 
EXCEPTION CONDITIONS for which a call on that function is to be 
rejected. Specifications are written independently of most 
implementation decisions concerning the module. For a 
well-conceived module, the specification is usually much easier 
to understand than its implementing program (see (S4)). 
Specifications are written in the language SPECIAL, discussed 
below. Completeness is implied by the semantics of SPECIAL, in 
that any primitive V-function values that are not mentioned in 
the specification of an 0- or OV-function remain unchanged. 
Therefore the omission of a desired effect may result in an 
unfortunate specification, but will not result in an inconsistent 
one. Consequently, there can be no unspecified side-effects at 
the level of the specified function. 
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{S3)  MAPPING FUNCTIONS 

For each module above the lowest level of the design, a MAPPING 
FUNCTION is written that characterizes the state of the module in 
terms of the states of lower-level modules. A mapping function 
is written as a set of expansion rules, in each of which a 
higher-level V-function value is expanded as an expression 
containing lower-level V-function values. These expansion rules, 
called MAPPING FUNCTION EXPRESSIONS, are also written in SPECIAL. 
In this way assumptions are explicitly stated as to how the data 
structures of a module are represented in terms of lower-level 
modules. For example, a mapping function would relate the data 
structure of a user process to that of a system process, or a 
segment to a sequence of pages. 

{S4)  IMPLEMENTATION 

Programs are then written to implement the visible functions of 
each level (except for the lowest level) in terms of those at the 
next lower level. Such programs are called ABSTRACT PROGRAMS 
since they use functions that implement abstract operations 
specified at lower levels of the system. Various implementation 
languages are possible. For present purposes, PL/I or a subset 
thereof may be considered adequate. Such programs may be 
compiled directly (with calls on lower-level programs) . 
Optimization can them lead to more efficient programs by 
application of correctness preserving transformations. 

Stages 0, 1, 2, 3 and 4 formalize respectively the following five 
conventional steps in software development: interface definition 
and decomposition; system modularization; specification; data 
representation; and coding. The results of stages 0, 1 and 2 are 
considered to constitute the DESIGN, while those of Stages 3 and 
4 constitute the IMPLEMENTATION. In the methodology referred to 
here, stages 2, 3, and 4 are carried out for each level in the 
hierarchy. 

III.   THE METHODOLOGY FOR VERIFICATION 

The stages of development provide the basis for the verification 
effort. Associated with each of these stages of design and 
implementation is the statement or verification of correctness 
properties appropriate for that stage, for each level in the 
hierarchical design. At Stage 0, the desired properties of the 
system can be explicitly formulated. One set of such properties 
is given by the *-property and the simple security condition of 
Bell and LaPadula [74], along with their duals for integrity. 
These properties are discussed in the next section. Other 
properties are also mentioned in this paper. At Stage 1, the 
consistency of the hierarchical structure and of the naming of 
functions can be demonstrated. At stage 2, the desired 
properties can be  proven  about  the  design  (i.e.,  about  the 

PAGE 8 



specifications  of  the  visible  interface),  independent of 
subsequent implementations.  Proofs are based on 

* syntactic properties of SPECIAL (SYNTACTIC properties — 
for the purposes of this paper — are those that are 
algorithmically checkable, while SEMANTIC properties often 
need a formal — undecidable — proof procedure to 
establish), 

* syntactic properties not in SPECIAL but required of all 
specifications in the system under consideration, 

* semantic properties of the specifications. 

In addition,  each module  specification  can  be  shown  to  be 
self-consistent  (i.e.,  satisfiable) at this stage.  At stage 3, 

design consistently with the specifications. For example, no two 
distinct states at a higher level can both correspond to a single 
state at a lower level. Consistency of the mapping functions 
with the outputs of the previous stages is demonstrated similarly 
to self-consistency of the specifications. At stage 4, the 
implementation is proved to be consistent with the specifications 

specifications of the moc^.^.- „»..... ~...c^~...-    r-- 
mapping function expressions relating these modules 

Once a verified system is obtained, it will tend to evolve with 
time. Changes in specifications and in implementations require 
corresponding reverification. However, reverification is 
required only where changes in specifications and implementations 
have affected the validity of the earlier verification. The 
staged application of this methodology and the formally defined 
modular decomposition can considerably simplify the 
reverification effort. 

On the basis of its applications to date, the staged development 
appears to give — from one stage to the next — successively 
greater confidence in the resulting systems, first in terms of 
the suitability of the design and then in terms of the 
correctness of its implementation. Subtle design bugs have been 
discovered relatively easily in attempting proofs. Significant 
savings in development costs can result from detection of 
inherent insecurity in the design or implementation as early as 
possible. Thus there is great desirability for automated tools 
wherever possible. 
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IV..   THE BASIC MULTILEVEL SECURITY MODEL 

The security model of Bell and LaPadula [74] is considered next. 
For security, each object (i.e., operating system resource such 
as a segment or process) being written into or read from has a 
classification level and a category set, collectively referred to 
as the OBJECT SECURITY LEVEL. Also, each user has a clearance 
level and a category set, collectively referred to as the USER 
SECURITY LEVEL. Clearance and classification levels are linearly 
ordered, e.g., TOP SECRET, SECRET, etc., while category sets are 
partially ordered. One security level is AT LEAST that of 
another if and only if its classification or clearance level is 
at least that of the other and its category set contains the 
category set of the other. Similarly, for integrity, each object 
or user has its own integrity level, and partial ordering is 
defined as for security levels. The ordered pair consisting of 
the security level and the integrity level is called the ACCESS 
LEVEL. (To avoid confusion, each such level is always identified 
by an adjective. The term "level" used by itself refers to a 
collection of modules of the hierarchical design.) 

The Bell and LaPadula model is expressed as follows. 

SECURITY CONDITIONS: 

The *-property for security: Writing is permitted only into 
an object with AT LEAST the user's security level. That is, 
there is no writing downward in security level. 

The simple security condition: Reading is permitted only 
from an object with AT MOST the user's security level. That 
is, there is no reading upward in security level. 

Note that writing up is not considered to be insecure, but is 
nevertheless often undesirable. For example, overwriting 
existing information at a higher security level could be very 
damaging.  Thus writing up will also be forbidden in many cases. 

The desired integrity conditions are formally the duals of these 
two security conditions, as follows. 

INTEGRITY CONDITIONS: 

Writing is permitted only into an object with AT HOST the 
user's integrity level. That is, there is no writing upward 
in integrity level. 

Reading is permitted only from an object with AT LEAST the 
user's integrity level. That is, there is no reading 
downward in integrity level. 

In order to prove that these four properties hold with respect to 
formal specifications, it is desirable to restate them  in  terms 
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of the specification and assertion language, SPECIAL, which is 
discussed next. We then give the reformulation of the desired 
security properties in the form to be proven. 

V.   SPECIFICATION LANGUAGE PROPERTIES RELATED TO SECURITY 

SPECIAL is a formal nonprocedural specification language. It 
permits each function of a module to be specified independently 
of its implementation, so that properties of the design may be 
stated (in SPECIAL) and proved, independent of any 
implementation. 

Using the language SPECIAL, the effects of an 0- or OV-function 
of a module of some level are defined by the new values of the 
primitive V-functions of the level, related to the old values of 
those V-functions, to the arguments to the specified function, 
and to the parameters of the modules of the given level. (A 
PARAMETER of a module is a symbolic constant that is fixed for 
each particular instance of that module, as for example the 
maximum size of a segment.) Similarly, the value of a derived 
V-function or an exception condition is defined in terms of the 
values of the primitive V-functions of the level, the arguments 
of the specified derived V-function, and parameters of the level. 
The initial values of primitive V-functions are defined in terms 
of the module parameters and the arguments of the function. The 
following definitions are useful. 

A primitive V-function value is MODIFIED by the specified 
function if and only if it appears as a new value in an 
effect. 

A primitive V-function value is CITED by the specified 
function if and only if it appears as an old value in either 
an effect, an exception, or a derivation. 

SPECIAL requires that all V-function values cited or 
modified in any module specifications must be V-functions of 
the design level to which the given module belongs. 
A WRITE REFERENCE is a modified V-function value, or the 
value returned by a visible V-function or an OV-function, or 
the value of an exception condition. 

A READ REFERENCE is a cited V-function value, or a parameter 
of the level of the specified function, or an argument to 
the call on that function. 

A write reference is DEPENDENT on a read reference in a 
specification if and only if there exist two different 
legitimate values for the read reference that would cause 
the write reference to assume correspondingly different 
values. 
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It should be noted that exception conditions are included in the 
definition of a write reference because the presence or absence 
of an exception condition can itself result in information 
transfer. The occurrence of an exception condition can be viewed 
as a status value that is returned for each function call. 

VI.   REFORMULATION OF THE SECURITY PROPERTIES 

The access properties given in Section IV are now reformulated. 
In the specifications of each function of the visible interface, 
each primitive V-function has an access level associated with it. 
Similarly, each process able to call that interface has an access 
level. The arguments of all visible functions are without loss 
of generality assumed to be at the same level as the caller 
(i,e., the process invoking the function), since they are 
supplied by the caller. (If they originated at a lower level, 
they could have been copied upward.) The desired security 
conditions may then be expressed in terms of SPECIAL as follows. 

SECURITY CONDITIONS: 

In the specification of a  visible  function,  the  security 
level of each write reference must be 

(a) AT LEAST the security level of the caller, and 

(b) AT LEAST the security level of each read reference  upon 
which the write reference is dependent. 

These properties satisfy the basic intuitive notion that there 
should be no flow of information downward to a lower security 
level. The duals for integrity are achieved by interchanging 
SECURITY and INTEGRITY, and interchanging AT LEAST and AT MOST, 
as follows. 

INTEGRITY CONDITIONS: 

In the specification of a visible  function,  the  integrity 
level of each write reference must be 

(a) AT MOST the integrity level of the caller, and 

(b) AT MOST the integrity level of each read reference  upon 
which the write reference is dependent. 

These conditions must be satisfied by the specifications for the 
multilevel security interface for the Multics kernel. In fact 
the illustrative proofs of Appendix A show that the 
specifications can be written so that these properties can be 
proved automatically. We omit showing that the stated conditions 
imply conformance with the Bell and LaPadula model as stated 
here.    However,   the  reformulation  given  here  is  slightly 

PAGE 12 



■ 

different from that of Bell and LaPadula in that it permits 
writing up of information derived from a security level higher 
than that of the caller. This is not a violation of security, 
and permits greater flexibility in the design. 

The correspondence between these properties and the 
specifications for a set of visible functions for some system 
guarantees that if the system was initially in a secure state, 
that it will subsequently be in a secure state after the 
execution of a call on any of the functions of the visible 
interface. It remains, however, to show that the initial state 
is secure. Checks on the consistency of the initial conditions 
can be made in a way similar to the above correspondence proofs. 

In Millen [75], there are three additional conditions. These 
relate to the invariance of access levels of information 
repositories (the TRANQUILITY PROPERTY), to the prohibition from 
reading deleted information, and to the compulsory overwriting of 
deleted information before reuse (these last two properties 
called the RESIDUE PROPERTIES). These properties are trivially 
satisfied by our approach, as seen in Section VIII. 

The above multilevel access properties must then hold for the 
specifications of every 0-, 0V-, and V-function visible at the 
interface. That is, no calls of a visible 0-, 0V-, or V-function 
are defined except those satisfying the above security and 
integrity conditions. Instead of returning an exception on a 
prohibited call, every possible call follows the security rules. 
The proof technique is illustrated below, following a summary of 
a typical design to support the access properties. 

VII.  SPECIFICATIONS  FOR  THE 
MULTILEVEL ACCESS PROPERTIES 

MULTICS  KERNEL  TO  SUPPORT  THE 

The interface to the Multics kernel looks much like the existing 
Multics Ring 0 interface, except that security levels and 
integrity levels are associated with every object visible at that 
interface. However, much of the unnecessary portions of Ring 0 
have been or will have been removed, incorporating some of the 
ideas of Schroeder [75]. 

The interface visible outside of the kernel is formed from the 
interfaces of various modules, for which specifications exist 
(Stern [76]). This interface includes the following modules. 
(Note that input-output is currently missing, along with the 
trusted subjects , of reconfiguration and administration —e.g., 
of reclassification) 

address spaces 
processes 
segments 
quota cells 
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volumes (on secondary storage) 
access levels (security and integrity levels) 
clock 

An overview of a proposed kernel design decomposition is as 
follows, from highest kernel level to the lowest. The hardware 
consists of the main processors (Honeywell 68/80) and the secure 
front-end processor (SFEP). 

user-visible input-output (to support the SFEP) 
address spaces 
(user) processes 
segments 
quota cells 
volumes 
access levels 
supervisor-only segments 
paging 
input-output for system storage devices 
system processes 
interrupts and faults 
resident segments 
input-output hardware other than the SFEP 
machine instruction set (Honeywell 68/80) 
directly addressable memory (Honeywell 68/80) 
clock (Honeywell 68/80) 

Note that the objects of the top six levels of the decomposition 
all have access levels associated with them. The lower-level 
objects need not, although it may be convenient to give some of 
them security levels for purposes of proving program correctness. 
Note also that the SFEP has its own interface and its own 
decomposition into software and hardware. 

VIII. CORRESPONDENCE PROOFS BETWEEN SPECIFICATIONS AND THE 
MULTILEVEL ACCESS PROPERTIES 

We now describe the proof procedures used to demonstrate 
multilevel security in the Multics kernel. Proofs of the 
correspondence between the specifications and the reformulated 
multilevel access properties depend on the syntax and the 
semantics of the specifications. As noted above, the syntactic 
properties are of two kinds: those that are intrinsic in the 
language, and those that are extrinsic to the language but 
imposed on all specifications to be proved secure. As seen 
below, we rely on syntactic properties wherever possible, in 
order to simplify the proof effort. 

The proof is based on the permanent association of access levels 
with V-function instantiations and processes (e.g., users). A 
V-FUNCTION INSTANTIATION is the V-function together with a 
specific  set  of argument values for the V-function.  The system 
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Arbitrary security policies may also be imposed on top of such 
mechanisms. An example is provided by the access control list of 
Multics. Although these are not a part of the presently designed 
security  kernel,  the  proof approach is also applicable to such 
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policies. 

IX.  TOOLS TO SUPPORT THE DESIGN AND THE-CORRESPONDENCE PROOFS 

We have developed an on-line environment to support the first 
four stages of the methodology, i.e., the interface definition, 
the hierarchical decomposition, the specifications, and the 
mapping functions. It is also useful in performing the syntactic 
checks needed in the proofs of correspondence between the desired 
properties and the specifications. The design of this 
environment is open-ended, and is expected to be extended to 
support implementations and proofs of implementations. 

The environment currently runs on TENEX. The necessary 
translation routines have been written to convert the INTERLISP 
programs on TENEX to MACLISP for Multics, so that the environment 
could rather easily be made to run on Multics — although the 
error handling mechanism embedded in INTERLISP is different from 
that in MACLISP. The environment is directly applicable to the 
Multics security kernel. The environment currently exists in 
three parts, as follows. 

(PI) The HIERARCHY MANAGER, which permits the establishment 
of a hierarchy of collections of modules, and which is 
responsible for maintaining the design structure. 

{P2) The SPECIFICATION ANALYZER, which ■ determines if each 
module specification is syntactically correct. This part 
includes type checking. 

{P3) The MAPPING FUNCTION ANALYZER, which determines if the 
mapping  function expressions are syntactically correct and 
syntactically consistent with the specifications of the 
modules involved. 

In addition to these existing tools, a fourth tool is desirable 
to prove those cases involving semantic dependencies in the 
correspondence proofs. 

(P4) The MODEL CONSISTENCY CHECKER, which performs the 
syntactic checks for correspondence proofs that are not a 
part of the specification language syntax checking, which 
performs simple semantic checks, and which also generates 
logical formulae whose validity is equivalent to the 
satisfaction of the more complicated semantic conditions for 
consistency with the model. 

Based on experience to date, the generation of the logical 
formulae is straightforward. These conditions can be proved by 
hand or with machine assistance. Doing proofs on-line will be 
helpful in eliminating human error from the proof process. 
Essentially all of the correspondence proof effort can be 
mechanized  by these tools.  That is, all but a few special cases 
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can be treated automatically. The remaining cases, once 
identified, can be characterized, and most of those can then be 
treated automatically from then on by generalizing the special 
cases. 

X. IMPLEMENTATION CONSIDERATIONS 

The choice of a programming language for use with the methodology 
is not critical with respect to merely obtaining an 
implementation. PL/I is suitable for the task, although it is 
desirable to constrain the language somewhat to increase the 
correctness of the resulting code. However, the choice of 
programming language strongly influences the provability of the 
resulting programs. To support proofs of program correctness, 
the language should be well structured and should provide 
considerable intrinsic security, e.g., via strong type checking 
and restrictive scope rules. It must relate well to the 
methodology. It should simplify the task of program 
verification. It should include some of the desirable features 
of EUCLID, ALPHARD, SIMULA and CLU (such as protection and data 
abstraction). 

The problem of implementing a module that is shared by concurrent 
processes is important in a general way, as well as with respect 
to security. The SRI methodology includes a model of concurrent 
computation with which it is possible to state and prove that a 
shared implementation is correct. In addition, special 
synchronization conditions have been derived under which a set of 
correct stand-alone programs may be automatically modified so 
that together they constitute a correct concurrent 
implementation. Thus programs can be verified in isolation. If 
the required synchronization conditions are satisfied, 
correctness in the real operating environment is immediately 
assured, given correct hardware operation. 

Thus the correctness of implementation depends on the correctness 
of the specifications, the consistency of the implementation with 
the specifications without regard to concurrency, and the 
correctness of the synchronization conditions. 

XI. TOOLS TO SUPPORT IMPLEMENTATION 

In addition to the tools outlined above to support the design and 
the correspondence proofs, the following tools are also under 
development at SRI to support implementation and program 
verification. 

(P5) The PROGRAM HANDLER, which determines if each program 
is syntactically correct, and which can also perform simple 
semantic checks on the programs, such as those for the set 
of synchronization conditions noted above. 
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(P6) The DEVELOPMENT DATA-BASE MANAGER,  which  maintains  a 
data base of  the  specifications, programs, and proofs in 
(PI) , (P2) , (P3) , (P4) , and (P5) ,  keeping  track  of  which 
modules are specified, mapped, implemented, and verified. 

XII.  CONCLUSIONS 

The methodology discussed here has been applied to the 
specification of several secure systems, and proofs of security 
properties of the specifications have been carried out, partly 
manually and partly with the help of on-line tools. The 
correspondence proofs are seen to be quite simple, since they are 
aided by 1) the syntax of the specification language and its 
specification analyzer, 2) the abstraction afforded by the 
specifications, and 3) the simplicity of the model. It is 
expected that essentially all of the correspondence proof effort 
can be automated by the tools outlined nere. 

As a side note for the future, we have also made considerable 
progress in proving the consistency of implementations and 
specifications. The synchronization conditions are simple to 
state and prove, and quite powerful. Thus the correspondence 
between specification and implementation can be highly credible, 
even in the absence of complete correctness proofs. 

/ 
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MULTICS SECURITY KERNEL CERTIFICATION PLAN 

APPENDIX A 

METHOD FOR PROVING MULTILEVEL SECURITY 

R. Feiertag 

ABSTRACT 

This paper presents a formal model of multilevel security. 
This new model is attractive because it has a simple intuitive 
interpretation and can be directly applied to proving the multi- 
level security of systems whose designs are specified in the 
specification language SPECIAL.  The multilevel security model 
developed by Bell and LaPadula can be derived as a special case 
of the general model described below and the security properties 
(i.e., the simple security property and the ^-property) of Bell 
and LaPadula are roughly equivalent to the strong properties (PZ) 
below.  It is shown how the model described below can be applied 
to the proof of multilevel security of system designs expressed 
in SPECIAL and an example of the proof technique is given.  The 
possibility of performing the proofs by semiautomated means is 
then discussed. 

MULTILEVEL SECURITY 

In a multilevel secure system there is a predefined set of 
security levels.  The security levels are composed of clearances 
(or classifications) and category sets, but the composition of the 
security levels is an unimportant detail for purposes of this dis- 
cussion and will be largely ignored.  What is important is that 
the security levels are partially ordered by the relation "less than" 
represented by "<".  Each process in a multilevel secure system is 
assigned a security level.  The processes may invoke functions that 
change the state of the system and return values.  Each  function 
instantiation (i-e-j a function with a particular set of argument 
values) is assigned a security level.  A process may only invoke 
those instantiations of funtions that have been assigned the security 
level of the process.  A system is multilevel secure if and only if 
the behavior of a process at some given security level can be 
affected only by processes at a security level less than or equal to 
the given level.  Stated in terms of functions, this says that the 
values returned by a function instantiation assigned some security 
level can be affected only by the invocation of function instantiations 
at lower or equal security levels.  Stated in loose terms this means 
that information can flow only upward in the system from processes 
of lower security level to processes of higher security level. 
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FORMAL MODEL OF MULTILEVEL SECURITY 

A multilevel system is defined to be the following ordered 
n-tuple: 

<S, s , L, "<", I, K, R, N> 
0 

where the elements of the system can be intuitively interpreted 
as follows: 

S   -  States:  the set of states of the system 

s   -  Initial state:  the initial state of the system; s  < S 
0 0 

L   -  Security levels:  the set of security levels of the system 

"<"  -  Security relation:  a relation on the elements of L that 
partially orders the elements of L 

I   - Visible function instantiations:  the set of specifica- 
tions of all the visible functions and operations; if a 
function or operation requires arguments then the function 
specification along with each possible set of arguments 
is a separate element of I 

K   -  Function instantiation level:  a function from I to L 
giving the security level associated with each visible 
function instantiation; K;I->L 

R   -  Results:  the set of possible values of the visible 
function instantiations 

N   -  Interpreter:  a function from IXS to RXS that defines 
how a given visible function instantiation invoked when 
the system is in given state produces a new state and a 
result; N:IXS->RXS. 

The precise interpretation of this model for the Multics specifica- 
tion will be given below. 

In order to define the model of multilevel security, it is 
useful to define the following functions: 

FCt) -  the value of the function F is the first element of the 
ordered n-tuple t 

Z(t) -  the value of the function Z is the last element of the 
ordered n-tuple t 

B(t) -  the value of the function B is the ordered n-tuple t with 
the last element removed 
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CCt,e)  the value of the function C is the ordered n-tuple 
t with the element e added at the end. 

The following parts of the model can now be defined: 

T      The set of all finite ordered n-tuples of visible 
function instantiations or, in other words, all 
possible sequences of operations 

* 
T = I 

M      The state resulting from the given sequence of opera- 
tions starting at some given state 

M* SXT->S 
MCs,t) = Z( N( Z(t), MCs, BCt) ))3 

E      The sequence of operations that results when all the 
operations whose level is not less than the given 
level are removed from the given sequence of operations. 

E;TXL->T 
ECt,l) = CK(Z(t))<l V KCZ(t))=l) => CCE(B(t),l), Z(t)) 

V ~CK(Z(t))<l V K(Z(t))=l) => ECBCt),!) 

Multilevel security can now be defined as follows: 

* * 

* CVi<I,s<S,t ,t <T) * 
* 1  2 * 

* E(t ,KCi))=E(t ,K(i)) (Pi)  * 
* 1 2 " * 
* * 

* => ?CNCi,M(s,t )))=FCN(i,M(s,t ))) * 
* 1 2 * 
* * 

This says that if two sequences of operations are each applied to 
a system in the same state and if these sequences differ only in 
operations whose level is not less than or equal to some level, then 
any operation of that level that is invoked immediately following 
the two sequences will return the same result.  In other words, the 
operations whose level is not less than or equal to this level cannot 
effect results visible to the level. 
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STRONG MULTILEVEL SECURITY PROPERTIES 

Unfortunately, it is difficult to prove that any specifica- 
tion meets this definition because any direct proof would 
require some induction on all possible sequences of function 
instantiations.  The number of such sequences is generally very 
large.  For this reason the following slightly more restrictive 
set of properties is more useful for proof because it does not 
involve sequences of function instantiations. 

It is first necessary to introduct the notion of a partial 
1 

state.  There is a partial state set S  for each security level 

1 of the system.  The cross product of all the partial state sets 
1 

( X S ) is isomorphic to the set of states (S).  Therefore, each 
VKL 
state s<S can be represented by the ordered n-tuple consisting of 

1 1 
one element s   from each of the partial state sets S . 

Intuitively, one can think of a partial state set as all the state 

variables assigned a given security level and a partial state set 

as one set of values for these state variables. 

The following useful functions can now be defined: 
1 

Q :s->S has as its value the partial state of 
1 each s<S for the level 1. 

1 k 
Q :s->   x   S     has as its value the partial state of 

vk<L|k<=l      each s<S for all levels less than or 
equal to 1 

k 
D :s->    x S  has as its value the partial state of 
1   vk<L|~Cl<=k}    each s<S for all levels not greater than 

or equal to 1 

It is now possible to define three new security properties 
whose conjunction is stronger than PI above: 
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* .-•■■• 

* CVKI)      C3j)CVs<S)   FCN(i,s))   =  JCQ (s)) CP2a) 

* 1 
* CVi<I,l<L)   C?J)CVs<S)   Q   CZCNCi,s}))   =   j CQ   Cs)) CP2b) 

ft 

ft 

ft 
ft 

* * 
ft * 

* (Vi<I,s<S)   D (s)   =  D CZCNCi,s))) (P2c)        * 
* K(i) K(i) * 
ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft 

1 * 

The first property (P2a) states that the result of a function 
instantiation at some level can be dependent only upon state 
variables of a lower or equal level.  The second property (P2b) states 
that the value assumed by a state variable at some level due to the 
action of some function invocation can be dependent only upon state 
variables at a lower or equal level.  The third property (P2c) states 
that a function invocation at some level can only change the values 
of state variables a greater or equal level. 

PROOF OF STRONG PROPERTIES 

The following is an outline of the proof that the strong 
multilevel security properties CP2a, P2b, P2c) imply the general 
multilevel security property (Vl);   in other words that 

ftftftftftftft*ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft 

* P2a  §  P2b   §  P2c  =>     PI (Tl) * 
* * 
*ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft 

Using  P2a  in  the   last  part  of PI yields: 

Cvi<I,t ,t <T)     CHKVstS] 
1     2 

KCi) KCi) 
1(Q CMCs,t   )))   =   j(Q (M(s,t   ))) 

1 2 

=>   F(NCi,M(s,t  )))   =   FCN(i,M(s,t  })) 
1 2 

and by eliminating the function j, the formula to be proven becomes 
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P2a   §  P2b   §  P2c 

= > 

Cvi<I,s<S,t   ,t  <T) CF1) 
1     2 

ECt   ,KCi))=ECt   ,KCi)) 
1 2 

KCD KCi) 
= >  Q CMCs,t   )}=Q CM(s,t  )) 

1 2 

Now consider the cases in PI when ECt ,K(i)) = E(t ,K(i)) is 
1 2 

false.  In these cases the theorem Tl is trivially true.  Next 

consider the cases where ECt ,K(i)) = ECt ,KCi)) is true.  These 
1 2 

cases require an inductive proof.  The induction will be over the 

length of the reduced sequence ECt,KCi}).  Since only the cases 

where the reduced form of the two strings t  and t  are equal are 
1     2 

being considered, it is known that the lengths of the two reduced 

strings ECt ,K(i)) and ECt ,KCi}) will be equal. 
1 2 

The basis of the induction is a reduced length of 0.  In this 

case the sequences t and t  can contain only function instantiations 
1    2 

whose level is not less than or equal to KCi).  From property P2c 
one can observe that a function instantiation whose level is not less 
than or equal to KCI) cannot change the partial state of the system 
at levels less than or equal to KCi).  Therefore, the partial state 
at levels less than or equal to KCi) must remain the same for 
sequences whose reduced length is 0.  For these sequences: 

KCi) KCi) 
Q    CMCs,t)) = Q    Cs) 

and therefore, Fl is true. 

For the purpose of accomplishing the inductive step in the 
proof, define the function G :T->T to map a sequence of function 

1 
instantiations onto the beginning of that same sequence up to but 
not including the last function instantiation whose level is less 
than or equal to 1.  Also define the function H :T->I to map a 

1 
sequence of function instantiations onto the last function 
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instantiation in the sequence whose level is less than or equal 
to 1.  If a sequence t has reduced length n with respect to 
some level 1 then the sequence G (t) has reduced length n-1 

1 
with respect to 1.  The induction hypothesis states that 

KOO KCi) 
Q CMCs,G Ct  )))=Q CMCs,G (t  ]))   for  any  two 

KCi)  1 KCi)  2 
sequences, t and t , whose reduced sequences are equal.  Now it 

1    2 
is necessary to show that the last parts of sequences t  and t 

1     2 
make identical changes to the partial states for levels less than 
or equal to KCi).  If H    Ct ) is not equal to H    Ct ) then 

KCi)  1 KCi)  2 
ECt }KCi))=ECt ,KCi)) is false and Fl is trivially true.  Recall 

1 2 
that property P2b states that any partial state at some level 
that results from the invocation of a function instantiation 
must be a function of partial states with lower or equal level. 
Therefore, the partial states with level less than or equal to 
KCi) resulting from the invocation of H   Ct ) and H   Ct ) 

KCi)  1      KCi)  2 

KCi) 
must be functions of Q    CMCs,G    Ct ))) and 

KCi)  1 
KCi) 

Q   CM(s,G   Ct ))) respectively.  If H   Ct ) is equal to 
KCi)  2 KCi)  1 

KCi) KCi) 
H    Ct ) and since Q    CM(s,G    Ct ))) = Q    CMCs,G    Ct ))) 
KCi)  2 KCi)  1 KCi)  2 

from the induction hypothesis then the partial states resulting 
from the invocations of H   Ct ) and H   Ct ) must be identical. 

KCi)  1      KCi)  2 
All that can be left in the sequences t  and t  after the last 

1     2 

function instantiation whose level is less than or equal to KCi) 
are obviously function instantiations whose level is not less than 
or equal to KCi).  From P2c it is known that such function 
instantiations cannot change partial states with levels less than or 
equal to KCi).  This completes the outside of the proof. 

INTERPRETATION OF THE MODEL 

In order to apply the security properties defined above to a 
particular system design, it is necessary to relate the elements 
of the model of a multilevel secure system to the specification 
language and to the particular system.  Recall that the model is the 
following n-tuple: 

<S, s , L, "<", I, K, R, N> 
0 
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instantiation in the sequence whose level is less than or equal 
to 1.  If a sequence t has reduced length n with respect to 
some level 1 then the sequence G (t) h^-s reduced length n-1 

1 
with respect to 1.  The induction hypothesis states that 

KCi) KCi) 
Q CMCs,G Ct  )))=Q CMCs,G (t  )))   for  any  two 

KCi)  1 KCi)  2 
sequences, t and t , whose reduced sequences are equal.  Now it 

12 ■ 
is necessary to show that the last parts of sequences t  and t 

1     2 
make identical changes to the partial states for levels less than 
or equal to KCi).  If H    Ct ) is not equal to H    Ct ) then 

K(i)  1 KCi)  2 
E(t ,KCi))=ECt ,KCi)) is false and Fl is trivially true.  Recall 

1 2 
that property P2b states that any partial state at some level 
that results from the invocation of a function instantiation 
must be a function of partial states with lower or equal level. 
Therefore, the partial states with level less than or equal to 
KCi) resulting from the invocation of H   Ct ) and H   (t ) 

KCi)  1      KCi)  2 
KCi) 

must  be  functions  of Q CMCs,G Ct  )))   and 
Ka)   i 

KCi) 
Q CMCs,G Ct  )))   respectively.     If H Ct  )   is   equal   to 

KCi)      2 KCi)     1 
KCi) KCi) 

H Ct   )   and  since  Q CMCs,G Ct   )))   =  Q CMCs,G (t  ))) 
KCi)  2 K(i)  i KCi)  2 

from the induction hypothesis then the partial states resultino- 
from the invocations of H   Ct ) and H   Ct ) must be identical. 

KCi)  1      KCi)  2 
All that can be left in the sequences t  and t  after the last 

1     2 

function instantiation whose level is less than or equal to K(i) 
are obviously function instantiations whose level is not less than 
or equal to KCi).  From P2c it is known that such function 
instantiations cannot change partial states with levels less than or 
equal to KCi).  This completes the outside of the proof. 

INTERPRETATION OF THE MODEL 

In order to apply the security properties defined above to a 
particular system design, it is necessary to relate the elements 
of the model of a multilevel secure system to the specification 
language and to the particular system.  Recall that the model is the 
following n-tuple: 

<S, s , L, "<", I, K, R, N> 
0 
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The elements of the model can he interpreted as follows for the 
Multics specification: 

S   -  States:  all possible collective values of all the 
primitive V-functions of the specification; each 
state can be represented by a particular set of 
values that the primitive V-functions can assume. 

s   -  Initial state:  the initial values of all the primitive V- 
0     functions as given in the specifications. 

L  -  Security levels:  each security level is defined by 
two values, the clearance and the category set; the 
clearances are totally ordered. 

<   -  Security relation:  the security relation is a partial 
ordering on the security levels; a security level is 
less than (<) another security level if the clearance 
of the security level is less than the clearance of the 
other security level and the category set of the 
security level is a subset of the category set of the 
other security level. 

I   -  Visible function instantiations:  each visible function 
of the specifications together with a set of possible 
argument values to that function is a visible function 
instantiation. 

K - Function instantiation level: this is the level of the 
visible function instantiation and must be defined for 
each visible function instantiation. 

R  -  Results:  a result is the return value of a visible V- 
and OV-function invocation and the number of the first 
exception, if any, in a visible function invocation 
whose value is true; i.e. a result are the visible 
effects of the visible functions. 

N  -  Interpreter:  the semantics of the specification language. 

1 
The partial states S  are represented by subdividing the primitive 
V-function instantiations (i.e. primitive V-functions together with 
a particular set of argument values) into disjoint sets, one set 
for each security level. The partial state is determined by the value 
of the primitive V-function instantiations that are members of the 
partial state set. 
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STRONG SECURITY PROPERTIES IN TERMS OF SPECIFICATION LANGUAGE 

The  purpose of this section is to state the strong security 
properties P2a, P2b, and P2c in terms o£ constructs of the 
specification language.  In order to formally relate the strong 
security properties as given above in terms of the formal model 
to the specification language it is necessary to have a formal 
description of the semantics of the specification language. 
Since such a formal description of the language has not been 
completed, this section will discuss the strong security properties 
in an informal manner.  An English language description of 
SPECIAL is given in the SPECIAL Reference Manual.  The following 
definitions will be useful in the discussion: 

^A primitive V-function instantiation is said to be modified 
by a particular visible function instantiation iff the 
primitive V-function instantiation appears as a new (quoted) 
value in the effects section of the specification of the 
visible function and the value of the primitive V-function 
instantiation could be changed by invoking the visible 
function instantiation. 

*A primitive V-function instantiation is said to be cited by 
a particular visible function instantiation iff the primitive 
V-function instantiation appears as an old (unquoted) value 
in the specification of the visible function. 

*A write reference in a visible function instantiation is a 
primitive V-function instantiation, the return value of a 
V- or OV-function, or the exceptions. 

*A read reference in a function instantiation is a cited 
primitive V-function instantiation. 

^The value of a read reference is legitimate iffit can be 
assumed by the cited primitive V-function instantiation after 
some sequence of 0- or 0V- functions applied to the system in 
its initial state. 

^The value of a read reference is type legitimate iffit is of 
the type of the cited primitive V-function. 

^A write reference is dependent upon a read reference with 
respect to a particular function instantiation iff there exists 
two different legitimate values for the read reference that 
would cause the write reference to assume correspondingly 
different values as the result of the invocation of the function 
instantiation. 
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A slightly stronger from of tke definition of dependency can be 
obtained by substituting "type legitimate" for "legitimate".  It 
is easier to determine th.e type legitimate values of a read 
reference titan it is to determine the legitimate values since 
type legitimacy is a property of the  language whereas legitimacy 
is a property of a particular set of specifications.  It is, 
therefore, easier to identify dependencies if the type legitimate 
version of the definition is ised; however, for the purposes of 
this discussion either version of the definition of dependent 
suffices. 

Given the above definitions it is possible to easily state 
the strong security properties in terms of the specification 
language.  Note first that the above definition of dependence 
simply defines a functional relationship, i.e., if a write 
reference is dependent upon a read reference then the value of 
the write reference is simply a function of the value of the read 
reference.  Recall that property P2a states that the result of the 
invocation of a function instantiation of some level is a function 
of (i.e., is dependent upon) the values of the state variables 
(i.e., the primitive V-function instantiations) of lower or equal 
levels.  The results are the return values of V- and OV-functions 
and the exception conditions of all visible functions.  Therefore, 
property P2a can be restated as: 

P2a The return value of a V- or OV-function and the exceptions 
of a visible function instantiation can be dependent, with 
respect to that visible function instantiation, only upon 
read references of lower or equal level. 

Property P2b states that the values assumed by a state variable 
(i.e., modified primitive V-function instantiation) at some level 
can be dependent, with respect to a visible function instantiation, 
only upon state variables (i.e., cited primitive V-function 
instantiations) at a lower or equal level. -Restated this is: 

P2b The value assumed by a modified primitive V-function 
instantiation at some level can be dependent, with 
respect to a visible function instantiation, only upon 
read references at a lower or equal level. 

The similarity in the restatements of properties P2a and P2b and 
the fact that the return value, exceptions, and modified primitive 
V-function instantiations of a visible function are simply the 
write references of the function allows the following combination 
of the statements of the two properties into: 

P2a,b For each visible function instantiation, the security 
level of each write reference must be at least the 
security level of each read reference upon which the 
write reference is dependent. 
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Property P2c states that the invocation of a function 
instantiation at some level can change only the values of state 
variables (i.e., modified primitive V-functions) at greater or 
equal levels.  If the return value and the exceptions are 
defined to be at the level of the function instantiation of 
which they are a part then this property can be restated as: 

P2c  For each visible function instantiation, the security 
level of each write reference must be at least the 
security level of the function instantiation. 

Combining this statement and P2a,b above gives a general restate- 
ment of the strong security properties in terms of SPECIAL: 

* A 

A 

A 
*  P3  For each visible function instantiation, the security level 

of each write reference must be at least the security 
level of: * 

A 

(a)  the function instantiation, and * 

(b)  each read reference upon which the write reference 
* is dependent. * 
A A 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Given a formal description of the semantics of SPECIAL, property P3 
can be formally stated and the logical statement P3 => P2 can be 
rigorously proven true. 

DETERMINING DEPENDENCIES 

This section discusses means for identifying dependencies. 
The objective is to find some simple algorithm for identifying 
dependencies.  Unfortunately, determining if some write reference is 
dependent upon some read reference is, in general, undecidable.  The 
approach taken here is to identify potential dependencies.  If the 
set of all write references of a specification is W and the set of all 
read references is R, then the dependency relation DR is a subset of 
WXR and the potential dependency relation PDR is a subset of WXR and 
a superset of DR.  If property P3 can be proven for potential 
dependencies rather than for dependencies, then clearly P3 must be 
true for dependencies.  Property P3 for potential dependencies rather 
than dependencies will be termed P4.  The problem then becomes to 
identify the set of potential dependencies and show that all 
dependencies are included in this set.  However, the cardinality of 
the set of potential dependencies must be kept as small as possble 
to make the proof of P4 tractable. 
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In order to simplify the following discussion, it will be 
assumed that the specifications are in expanded form.  An 
expanded specification is one in which the substitutions result- 
ing from DEFINITIONS, EXCEPTION_OF, and EFFECTS_OF expressions 
have been performed.  These substitutions are straightforward. 
In and expanded specification all read and write references 
relevant to a visible function instantiation will be explicitly 
present in the body of that visible function's specification. 
Specifications may still be written in unexpanded terms of 
expanded specifications. 

There are certain types of expressions that are legal in 
SPECIAL, but make it very difficult to determine if dependencies 
or potential dependencies exist.  To eliminate the necessity of 
dealing with such expressions a canonical form for specifications 
is introduced.  The canonical form is a restriction of SPECIAL. 
In the canonical form, the grammar of SPECIAL is modified and 
augmented as follows.  An <expression> in the body of a function 
specification cannot contain the symbol which is the identifier 
for the return value of the function.  The definition of <call> 
is modified to be: 

<call> ::= <symbol> '(' [<expression> ( ',' <expression>)^l ,), 

The purpose of these two changes is to eliminate the possibity of a 
write reference in an<expression>.  A <write reference> is either 
a quoted V-function or the identifier of the return value for 
visible function in which the <write reference> occurs.  The 
following definitions are added (note that in the TYPECASE alterna- 
tive of <canonical expression> below that <symbol> must not be 
the identifier of the return value): 

<canonical expression> 
::= <write reference> '^ <expression> 

| <canonical expression> AND <canonical expression> 
<expression> '=>' <canonical expression> 

| (FORALL | EXISTS) <qualif\declarationlist> 
":" <canonical expression> 

1 IF <expression> THEN <canonical expression> 
ELSE <canonical expression> 

| LET <qualification> ( ';' <qualification> )* 
IN <canonical expression> 

| TYPECASE <symbol> OF 
( <canonical case> ';' )+ END 

<canonical case> 
::= <typespecification> ':' <canonical expression> 

and finally the definition of <effects> is changed to: 

<effects> ::= EFFECTS ( <canonical expression> ';' )+ 

The purpose of the canonical form is to restrict how write 
references can occur in specifications.  This canonical form was 
arrived at through experience with writing specifications and 
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attempts to prove the multilevel security of specifications.  Our 
experience shows no specifications that do not fit into this 
canonical form. 

In order to get some idea of how dependencies are indicated 
by function specifications, it is necessary to have some rough 
idea of the semantics of a function specification.  For all visible 
functions the semantics of exceptions can be stated as: 

(Vi|0<i<=n) CC AND ~EX } AND EX ) = CEV=i) (Sla) 
0<j<i   j       i 

( AND  ~EX ) = EV=0 (Sib) 
(XKfn   i 

where EX is the ith exception, n is the number of exceptions, 
i 

and EV is the exception value.  EV is the number of the first 
exception whose value is true.  If all the exceptions are false, 
then EV is 0.  In an 0- or OV-function the semantics of effects 
are: 

( AND  ~EX ) = ( AND  EF ) (S2) 
0<i<=n   i    0<j<=m  j 

where EX , n, and EV are as above and EF is the ith effect and m 
i i 

is the number of effects.  Note that in an OV-function the return 
value is specified by the identifier given in the function header. 
In a V-function the semantics of the derivation is: 

( AND  ~EX ) = CRV=DE) (S3) 
0<i<=n  i 

where EX , n, and EV are as above and RV is the value returned by 
i 

the function and DE is the derivation. 

Consider now where potential dependencies can exist.  As a 
first approximation assume that a potential dependency exists 
between all write references of a visible function instantiation 
and all of its read references.  This is clearly a superset of all 
the dependencies that exist with respect to the function since the 
semantics of SPECIAL does not allow the value of primitive V-functions 
not appearing in the specification of a function to be changed by 
the function and does not allow any new values to be dependent on 
nonappearing primitive V-functions.  Unfortunately, this rather 
simple identification of potential dependencies includes too many 
potential dependencies and it is not possible to construct useful 
systems that are consistent with property P4. 
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Consider the three types of write references separately. 
First consider the value of the exceptions, EV.  EV is clearly 
potentially dependent only upon read references in the excep- 
tions section of the function specification.  In fact, in some 
circumstances it may be possible to prove that for some 
instantiations of a visible function, that a particular excep- 
tion is always true.  In this case EV is potentially dependent 
only upon read references in exceptions coming before the one 
that is always true for these instantiations of the visible 
function. 

Now consider those write references that are modified 
primitive V-functions.  Modified primitive V-functions can only 
occur in the effects section of an 0- or OV-function.  A write 
reference in an effect can only be potentially dependent upon 
read references in that same effect and read references in the 
exceptions.  This follows from S2 above and the canonical form. 
If a write reference appears in a series of conjoined expressions 
then the write reference is not potentially dependent on read 
references in any of the other conjoined expressions.  This 
follows from the definition of conjunction and the canonical 
form. 

Finally consider write references that are return values. 
If the visible function is an OV-function then the rules for 
modified primitive V-functions apply.  If the visible function is 
a V-function then the return value is potentially dependent upon 
the read references in the exceptions and in the derivation. 

In summary, the rules for potential dependency are as follows 

PDR-^  The exceptions value is potentially dependent upon 
read references in all exceptions up to the first 
exception that is always true for the visible func- 
tion instantiation. 

PDR2  Each modified primitive V-function in an 0- or OV- 
function and each return value in an OV-function is 
potentially dependent upon read references in excep- 
tions and all read references in the same effect as 
the write reference with the exception of read 
references in expressions conjoined with the 
expression containing the write reference. 

PDR3 The return value of a visible V-function is potentially 
^    dependent upon read references in the derivation and 

read references in exceptions. 

PAGE A-14 



The following provide interesting and important exceptions 
to the above rules: 

FALSE => exp_a 
IF FALSE THEN exp_a ELSE exp_b 
IF TRUE THEN exp b ELSE exp a 
FORALL x INSET (J:   exp_a 
FORALL x  FALSE: exp_a 
EXISTS x INSET Q: exp_a 
EXISTS x  FALSE: exp_a 
LET x INSET Q IN exp_a 
LET x i FALSE IN exp_a 

No write reference can be dependent upon any read reference in 
exp_a of these expressions.  This is evident from the semantics 
of these expressions.  Although it is unlikely to see expressions 
precisely like these in well written specifications, it is 
possible that such expressions effectively exist for some 
instantiations of visible functions.  Some examples of these will 
be given below. 

THE PROOF TECHNIQUE 

Before summarizing the steps in the proof technique, one 
further observation is useful.  Not all quoted primitive V-functions 
necessarily represent modified primitive V-functions and, therefore, 
do not necessarily represent write references.  For example in an 
expression of the form 

FALSE => "pvfCargs) = exp 

the quoted primitive V-function pvf does not represent a write 
reference because the expression does not constrain the value of 
pvf(args) to change.  This situation arises in all the expressions 
listed in the previous paragraph as exceptions to the potential 
dependency rules.  Similarly, a quoted primitive V-function in the 
effects section of a visible function instantiation in which some 
exception is always true is never a write reference. 

The proof of multilevel security of a given specification is 
quite straightforward.  For each visible function specification 
it must be shown that each instantiation of that function is con- 
sistent with property P4.  This can be accomplished by proving that 
P4 holds for all possible argument values to the function or it can 
be accomplished by dividing the possible sets of arguments into 
collectively exhaustive subsets and then proving P4 for each of the 
subsets.  For each subset the write references must be identified 
and then it must be shown that for each write reference there is a 
modified V-function, that the level of that V-function is greater 
than or equal to the level of the visible function instantiation. 
Finally, it must be shown that for each write reference, each read 
reference upon which the write reference is potentially dependent 
has a level less than or equal to the level of the write reference. 
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Unfortunately, it is not always possible to determine the 
level of a read or write reference in a particular function 
instantiation by inspection of the specification.  For example, 
an argument to some primitive V-function might be the value of 
some other primitive V-function.  In this case it is necessary 
to know what values the other primitive V-function might have 
in order to know what the level of the read reference is.  Such 
information may be deducible from the specification of the visible 
function in question (local assertion) or it may require 
proving some invariant of the specification of the system as a 
whole (global assertion).  In either case it is necessary to 
prove P4 for all possible values that the other primitive 
V-function above may assume.  Examples of this case are given 
below. 

EXAMPLE 

The proof of the multilevel security of a specification will be 
demonstrated using the specification given in Fig. 1.  It is 
necessary to use a rather simple example in order to be able to 
describe the proof within a reasonable amount of space.  Proofs 
of large specifications are rather lengthy.  The security levels 
of the specification of Fig. 1 are given by the definition of 
the security_level type.  The definition of the security relation 
(<) is given by the definition read_allowed in the specification, 
i.e., the security level LI is less than or equal to the security 
level L2 (L <=L2) iff read_allowed(L2, LI) is true.  The level of 
each visible function instantiation and each primitive V-function 
instantiation is given in Fig. 2.  Note that the specification 
of Fig. 1 is not in expanded form because there are definitions 
present.  However, because these definitions contain no primitive 
V-functions and because they succinctly express the security 
relation, it is more convenient to deal with this unexpanded form. 

Consider first the first visible function "create_seg".  The 
security level of all instantiations of this function (and its 
arguments, parameters, exception value, and return value by 
definition) is the value of its last argument "si".  This function 
has no exceptions and, therefore, the exception value cannot be 
dependent on the system state.  Look now at the write references 
in the EFFECTS section.  There are three quoted primitive V-functions 
and one return value identifier.  We must consider as potential 
write references all those instantiations of the quoted primitive 
V-functions subject to the constraints of the qualification of the 
EXISTS statement.  Using the security levels of the primitive 
V-function instantiations given in Fig. 2, to demonstrate property 
P4a we must prove that 

for ^h_uid used(new_uid.id, si): 
(vnewjaicT | h_uid_used(new_uid. id, si) A new uid.l=sl) 
si <= si 
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for   ■'h_seg_exists (new_uid) : 
Onew_uid   |   h uid_used(new_uid.id,   si)   A new_uid.l=sl) 
si  <=  new^iH".   1 

and for "h  contents(new uid, i): 
Cvnew_ai3 | h^id^useJCnewjuid.id, si) A new_uid. l=sl) 
(vi |0<=i<size) si <= new_uid.l 

These three assertions are trivially true.  Now, consider the 
read references of the EFFECTS section.  The primitive V-function 
h_uid_usedCnew_uid.id, si) represents several read references, 
one for each possible value of "new_uid.id".  By rule PDR2 we 
know that all the write references of each instantiation of 
"create_seg" are potentially dependent upon these read references. 
In order to prove P4b, it must be shown that each of these write 
references is at a level at least that of the read references. 
Fortunately, all the read references are at the level "si", the 
level of the visible function instantiation, and we have already 
shown that all the write references are at least at this level. 
This completes the proof for the function "create_seg". 

Consider now the visible function "write_seg".  We will 
consider separately four different collections of instantiations 
of this visible function: 

case 1:  write_allowedCsl, suid.l) = FALSE 
AND read_allowedCsl, suid.l) = FALSE 

case 2:  write_allowed(sl, suid.l) = FALSE 
AND read_allowedCsl,   suid.l)   =  TRUE 

case 3:  write_allowedCsl, suid.l) = TRUE 
AND read_allowedCsl, suid.l) = FALSE 

case  4:     write_allowedCsl,   suid.l)   =   TRUE 
AND read_allowed(sl, suid.l) = TRUE 

In case 1, the first exception of all instantiations in the case 
is true, and therefore, the exception value will always be 1.  For 
these instantiations, the exception value is the only write refer- 
ence, is not dependent on any read references, and is at the level 
of the instantiation by definition.  Property P4 is, therefore, 
trivially true.  Case 2 follows the same reasoning.  In case 3, all 
the exceptions are always false and the exception value is always 0 
and, therefore, the exception value is not dependent on any read 
references for these instantiations.  The only quoted primitive 
V-function in the EFFECTS section is h_contents(suid, offset).  To 
prove P4a we can show that the level of all instantiations of this 
primitive V-function is at least "si", the level of the visible 
function instantiation.  The level of all instantiations of h_contents 
(suid, offset) is suid.l and, since we are considering only 
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instantiations in case 3, we know that write_allowed(sl, suid.l) 
is true.  We wish to prove that si <= suid.l, and this follows 
directly from write_allowedCsl, suid.l) being true.  In order to 
prove P4b we must show that the level of the instantiation of ^h_ 
contents(suid, offset) is at least the level of the read reference 
that is the unquoted version of this same primitive V-function 
instantiation.  Since the read reference and write reference in 
question are for the same primitive V-function instantiation, their 
security levels must be the same.  In case 4 the exception value 
is dependent on instantiations of the primitive V-functions h_seg_ 
exists(suid) and h_contents(suid, offset).  Both these primitive 
functions have a level of "suid.l".  However, we know that suid.l 
<= si because read_allowed(sl, suid.l) is true.  The reasonging for 
the EFFECTS section is similar to that of case 3 except that the 
write reference of 'h_contents(suid, offset) is now dependent upon 
the value of h seg exists(suid) as well as the previous value of 
h_contents (suicT, oTfset).  However, the security levels of h_contents 
(suid, offset) and h_seg_exists(suid) are the same and P4b is easily 
satisfied.  This completes the proof of multilevel security for 
"write_seg".  The arguments for "delete_seg" and "read_seg" are 
quite similar. 

Although the sample specification is quite simple, the same 
proof technique can be applied to more complex systems.  The 
added difficulty in proving more complex systems arises from the 
increased number of read and write references and the more complex 
techniques necessary to prove relationships between the security 
levels of these read and write references.  Systems that require 
the use of global assertions in the proofs are even more difficult 
because appropriate global assertions must be determined and the 
validity of these global assertions must be proven.  Although the 
proofs may be more complex, the basic technique demonstrated in the 
above example does not change. 

AUTOMATING THE PROOFS 

The proof of the simple specification of Fig. 1 is simple 
but quite lengthy when fully documented.  Proofs of complex systems 
will be extremely lengthy.  In general, the proof of multilevel 
security of a specification is many times longer than the specifica- 
tion.  If these proofs are written manually, the probability of 
their correctness is very small.  Unfortunately, even a small error 
in the design of a system can result in a large breach of security. 
It is, therefore, necessary that there be a high degree of 
confidence in the total correctness of the security proofs.  Such a 
high degree of confidence in the correctness of the proofs cannot 
be effectively gained by manual generation and checking of the proofs. 
The necessary degree of confidence can only be gained by automatic 
generation or checking of proofs or some combination of automatic 
and manual techniques. 
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The proof technique described above has been designed to 
permit automatic generation of proof.  The identification of 
read references, write references, and potential dependencies 
of the desired property P4 can be done very simply with knowl- 
edge of the syntax and a little of the semantics of SPECIAL. 
The proof of the relationships between the security levels of 
the read and write references requires some theorem proving, but 
the types of theorems involved are all of the same simple kind 
and most of them can be handled by a simplifier.  Those systems 
that require global assertions in order to perform the proofs 
will probably require human assistance in deriving the global 
assertions, however, the proof of the global assertions can 
probably be automated.  For a given system specification, the 
same theorems arise many times in proving the security of the 
different visible functions.  Once the security of a few of the 
visible functions has been proven, the proofs of the remaining 
functions follow similar patterns.  Highly efficient operation 
can be achieved if the automated prover is directed by a human 
operator for the proofs of a few of the visible functions and 
then uses the same techniques to automatically prove the security 
of the remaining functions.  Also, after the automated prover has 
proved the security of a system specification once and is aware 
of the necessary global assertions, it should be able to prove 
the security of modified versions of the system with human assis- 
tance.  The use of such a semi-automated prover is essential to 
having a high degree of confidence in the proofs, is within the 
current state of the art of automated verification, and will be 
more cost effective than manual proof techniques for large systems 
even with the high initial cost. 

Most of the tools necessary for constructing a semi-automated 
prover for the security of specifications already exist.  There 
exists several theorem provers and simplifiers which should be 
adequate for the types of theorems that will be generated.  A pro- 
gram exists to parse specifications written in SPECIAL and to con- 
vert to a form suitable for processing.  The necessary additional 
programs are a verification condition generator that formulates the 
theorems that express the desired relationships between the security 
levels of the read and write references and a suitable human inter- 
face.  Verification condition generators and human interfaces have 
been written to aid in the proof of properties in several other 
languages and the ideas in these programs can be used to create pro- 
grams suitable for proving the multilevel security of specifications. 

APPLICATION TO THE MULTICS SPECIFICATIONS 

The multilevel security model and the proof technique described 
above can be applied to the Multics specifications.  However, there 
are two significant discrepancies between the security model and the 
Multics specifications.  First, the Multics specifications incorpor- 
ate the notion of a trusted process, i.e., a process that is not 
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subject to the  multilevel security constraints.  Trusted 
processes are clearly in violation of the general multilevel 
security property (Vl)   above, therefore, it is necessary to modify 
the model in order to allow trusted processes to exist.  The modifi- 
cations necessary to PI, P2, P3, and P4 are all very simple, 
however, they will not be described here.  The modification involves 
adding a new predicate to the definition of a system that is true 
if the given visible function instantiation is subject to the multi- 
level security constraints.  During a proof it is not necessary to 
prove anything about those visible function instantiations for which 
the predicate is true. 

The second difference arises from the necessity of partitioning 
the primitive V-function instantiations into disjoint sets, one for 
each security level.  These partitions are not a function of time. 
However, in the Multics specifications, the security levels associ- 
ated with primitive V-function instantiations do change with time. 
For example the security level of the primitive V-function h_seg_ 
contents(seguid, offset) is not determined until a segment with the 
unique identifier seguid is created.  Before the segment is created 
the security level of this primitive V-function is undefined.  Some 
modification of the mathematical model might be found to permit the 
security level of a primitive V-function to remain initially undefined, 
however, it would probably be simpler to predefine the security level 
of all unique identifiers and assign a suitable unique identifier to a 
newly created segment.  This solution applies equally well to all 
dynamically created objects. 

The proof of multilevel security of the Multics specifications 
will require global assertions.  One such global assertion would be: 

h_kst_mode(procuid,   segno)[1] 
AND hjpprjringCprocuid)   <=  h_kst_rb Cprocuid,   segno) [2] 

=>  h_read_allowed(h_proc_trusted(procuid),   hjproc_al(procuid), 
h_qc_al(h_seg_qc(h_kst_seguid(procuid,   segno)))) 

Although this assertion seems rather formidable, it is quite easy 
to prove because very few 0- and OV-functions modify the values of 
the primitive V-function instantiations involved.  Also, the number 
of global assertions necessary to prove the multilevel security of 
the Multics specifications should be small. 

The Multics design also incorporates the notion of integrity. 
Integrity is the formal dual of multilevel security and a dual model 
for integrity can easily be stated.  Precisely the same proof 
techniques apply and, therefore, proof of integrity can be easily 
achieved together with the proof of security. 
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MODULE SEGMENTS 

TYPES 

clearance:  C INTEGER i | 0 < i AND i <= max_clearance ); 
category_set: 

C VECTOR_OF BOOLEAN cs   LENGTHCcs) = number_o£_categories ); 
security_level: STRUCTCclearance security_clearance; 

category_set security_categories); 
segment_uid:  STRUCT(INTEGER id; security_level 1); 

PARAMETERS 

INTEGER max_clearance sC the highest clearance ), 
number_o£_categories; 

DEFINITIONS 

BOOLEAN read_allowedCsecurity_level subject_sl, object_sl) 
IS subject_sl.security_clearance 

>= object_sl.security^clearance 
AND (FORALL INTEGER i | 0<i AND i <= nuinber_o£_categories 

obj ect_sl.security_categories[i] 
=> subject_sl.security_categories[i]); 

BOOLEAN write_allowedCsecurity_level subject_sl, object_sl) 
IS read_allowedCobject_sl, subject_sl); 

FUNCTIONS 

VFUN h_uid_used(INTEGER unique_integer; security level si) 
-> BOOLEAN b; 

s( true if unique_integer has been used before at 
security level si) 

HIDDEN; 
INITIALLY b = FALSE; 

VFUN h_seg_exists(segment uid suid) -> BOOLEAN b; 
s(true if segment suicf exists ) 
HIDDEN; 
INITIALLY b = FALSE; 

VFUN h_contents(segment_uid suid; INTEGER offset) 
-> INTEGER contents; 

s( returns contents of word at offset in segment suid ) 
HIDDEN; 
INITIALLY contents = ?; 

Fig. 1 (continued on next page) 

PAGE A-21 



OVFUN create_segCINTEGER size) [security_level si] 
-> segment_uid suid; 

sC create a new segment with size number of words ) 
EFFECTS 
EXISTS segment_uid new_uid  li_uid_usedCnew_uid. id, si) 

AND new_uid.l = si: 
'h_uid_usedCnew_uid.id, si) = TRUE 
AND suid = new_uid 
AND "h_seg_existsCnew_uid) = TRUE 
AND (FORALL INTEGER i | 0 <= i AND i < size: 

'h_contents(new_uid, i) = 0); 

OFUN delete_seg(segment_uid suid) [security_level si]; 
s( delete a segment with uid suid ) 
EXCEPTIONS 
read_allowedCsl, suid.l) AND ~h_seg_exists(suid); 
~write_allowedCsl, suid.l); 

EFFECTS 
FORALL INTEGER i: "h_contents(suid, i) = ?; 
■'h_seg_exists (suid) = FALSE; 

VFUN read_segCsegment_uid suid; INTEGER offset) 
[security_level si] -> INTEGER contents; 

s( returns the value of the item at offset in 
segment suid ) 

EXCEPTIONS 
~read_allowed(sl, suid.l); 
"'h_seg_exists (suid) ; 
h_contents(suid, offset) = ?; 

DERIVATION 
h_contents(suid, offset); 

OFUN write_9eg(segment_uid suid; INTEGER offset; 
INTEGER contents)[security_level si]; 

s( modify the contents of item offset in segment suid ) 
EXCEPTIONS 
"write allowed(si, suid.l); 
read_allowed(sl, suid.l) AND *'h_seg_exists (suid) ; 
read_allowed(sl, suid.l) AND h_contents(suid, offset) = ?; 

EFFECTS 
h_contents(suid, offset) ~= ? 
=> h_contents(suid, offset) = contents; 

END MODULE 

Fig. 1 - Example specification 
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Function Instantiation Security Level 

Cprimitive V-function instantiations) 

h._uid_used(unique  identifier,   si) si 
h_seg_existsCsuidy suid.l 
h_contentsCsuid,   offset) suid.l 

(visible function instantiations) 

create_segCsize)[si] si 
delete_segCsuid)[si] si 
read_segCsuid,   offset)[si] si 
write_seg(suid,   offset,   contents)[si] si 

Fig. 2 - Security levels of function instantiations 
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APPENDIX B 

Because of funding limitations, the Air Force terminated 
the effort which this document describes before the effort 
reached its logical conclusion.  The Air Force comments which 
were present at the time the effort was terminated are as 
follows: 

1. The report does not provide a complete certification 
plan.  The report adequately treats the proof of 
correspondence between the model and the top level 
specification.  There is no plan presented for the 
remaining effort to ultimately insure the correspon- 
dence between the model and the machine code represen- 
tation of the kernel. 

2. The report does not present sufficient data for a 
management evaluation of the cost/effectiveness of the 
automated tools.  The report does not identify the 
tools that will be required for the remaining stages 
of the verification and the cost (effort) that will be 
required to implement the tools. 

3. On Page A-l, the purpose of the multilevel security 
model is not clear.  It is not known whether this model 
is intended as an alternative [replacement) for the 
MITRE model or as an intermediate step in the proof of 
correspondence between the MITRE model and the formal 
specification.  The purpose of the model should be 
identified, and its correspondence to either the DoD 
security policy or the MITRE model needs to be demonstrated, 

4. On Page A-2 and A-3, several of the definitions on these 
pages are not formally complete.  For example, F, Z and B 
are not clearly defined for a one-tuple.  The recursive 
definitions of M and E do not have a "base" statement. 

5. On Page A-5, Line 6, the substitution of P2a in PI appears 
to have been made incorrectly.  P2a was substituted for 
the first rather than the last part of PI.  It should have 
been the last part. 
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MISSION 

OF  THE 

DIRECTORATE OF COMPUTER SYSTEMS ENGINEERING 

The Directorate of Computer Systems Engineering 
provides ESD with technical services on matters 
involving computer technolpgy to help ESD system 
development and acquisition offices exploit computer 
technology through engineering application to enhance 
Air Force systems and to develop guidance to minimize 
R&D and investment coats in the application of computer 
technology. 

The Directorate of Computer Systems Engineering 
also supports AFSC to insure the transfer of computer 
technology and information throughout the Command, 
including maintaining an overview of all matters pertain- 
ing to the development, acquisition, and use of computer 
resources in systems in all Divisions, Centers and 
Laboratories and providing AFSC with a corporate 
memory for all problems/solutions and developing 
recommendations for RDT&E programs and changes in 
management policies to insure such problems do not 
reoccur. 
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